
WHY DISTRIBUTIONS DO NOT SUPPORT 
MY DEVICE?

Marcin Juszkiewicz
Software Engineer
2016.03.12



2

WHAT IS MY DEVICE?
Let’s limit to ARM architecture only

What user/developer can have:

● Developer board

● Consumer electronics

● Chromebook

● Server

● Android powered phone/tablet



3

WHICH THINGS DISTRIBUTIONS DISLIKE?
I am thinking of Debian, Fedora etc

There are few things:

● Non-standard bootloader

● Partitions layout requirements

● Strange kernel versions

● Strange bootloader versions

● Binary blobs



4

WHY BOOTLOADER?
Standard bootloader == less work

How ARM device boots:

● 1st stage bootloader starts from in-CPU ROM

● 2nd stage bootloader is loaded from SD (U-Boot SPL)

● 3rd stage bootloader is loaded from SD (U-Boot)

● U-Boot loads configuration from SD

● U-Boot loads kernel, initramfs, dtb from SD

● U-Boot runs kernel



5

U-BOOT
One bootloader on nearly every ARM device

Benefits for distribution:

● Active development

● Developers opens for suggestions

● Easy to buy set for all supported devices

● One config file for all devices

● Console available in case something goes wrong

● Lot of ways to boot system

● GPL



6

Partitions layout matters?
One image for all devices

Standard installation image for ARM architecture:

● Partitions in MBR

● First one is ext4 mounted as /boot/ (starts at 4MB from beginning of card)

● Next is swap (size differ)

● Ext4 partition mounted as / (often expanded on first boot to fill card)

● U-Boot SPL is in /boot/ or stored in sectors of first 4MB

● U-Boot and it’s configuration are in /boot/

● Kernel, initramfs and devicetree are in /boot



Raspberry/Pi



8

PARTITION LAYOUT FOR RASPBERRY/PI
Why one image for all devices does not fit

Raspberry/Pi’s GPU enforces own requirements:

● Partition table in MBR

● First one is vfat mounted in Raspbian as /boot/

● Ext4 partition mounted as /

● Bootloaders and their configurations are in /boot/

● Kernel is in /boot/



9

STARTING RASPBERRY/PI
How GPU starts device and why vfat partition is required

How Raspberry/Pi boots:

● 1st stage bootloader starts from GPU’s ROM

● 2nd stage bootloader is read from vfat partition of SD (bootcode.bin)

● bootcode.bin loads start.elf

● start.efl loads config.txt, cmdline.txt and kernel.img

● start.efl starts CPU

● start.efl runs kernel



10

HOW TO HELP WITH RASPBERRY/PI 
Booting is weird but can be improved

We can make it a bit closed to standard way one:

● Instead of Linux kernel image we can use U-Boot as kernel.img

● U-Boot knows how to read from ext4

● U-Boot loads configuration from SD

● U-Boot loads kernel, initramfs, dtb from SD

● U-Boot runs kernel



11

BUT WHAT TO DO WITH VFAT FOR R/PI?
Standard image has only ext4

Changes need to be done:

● Let’s add vfat partition as first one

● Ext4 for /boot/ will be second so we need to change U-Boot configuration

● Swap and rootfs will move but we call them by UUID so nothing to change

● Mount vfat one as /boot/rpi/



Chromebook



13

PARTITION LAYOUT FOR CHROMEBOOK
We are different and what you will do with it?

Here everything is different:

● Partition table as GPT

● Kernel has own partition type (7f00)

● There are flags for partition priority

● There are flags telling about kernel use



14

LET’S BOOT CHROMEBOOK
Signed kernels, extra flags and other ideas

How Chromebook boots:

● 1st stage bootloader starts from CPU’s ROM

● 2nd stage bootloader is loaded from SPI flash memory

● Partition table (GPT) is read to find kernel partitions

● Kernel is read from partition with highest priority and proper other flags

● Signature is checked

● Kernel is run



15

HOW TO HELP WITH CHROMEBOOK? 
Booting is weird but can be changed

We can make it a bit closed to standard way one:

● Instead of Linux kernel image we can use U-Boot

● U-Boot knows how to read from ext4

● U-Boot loads configuration from SD

● U-Boot loads kernel, initramfs, dtb from SD

● U-Boot runs kernel



Roseapple/Pi



17

TOTAL FAILURE
Or how to fail interesting device

What went wrong:

● Linux kernel in 3.10 version

● U-Boot is old too

● No mainline activity

● Kernel repository in “one big commit” style

● Typical “runs Debian” on website plus modified Debian image



What can be done?



19

KERNEL
Things not in mainline do not exist

What to avoid:

● Kernel older than 2 releases (which means 4.3 – 4.5 now)

● Hundreds of patches to add support for device

● Own solutions for existing subsystems

● Changes altering code for other devices



20

CHANGING DISTRIBUTION’S KERNEL
Or how to get support

Some suggestions:

● Send own patches to proper kernel mailing lists

● Improve, rewrite according to suggestions

● Publish your repository in public

● Base your kernel on Torvalds’ repository

● Build own kernels with distribution’s configuration

● Provide set of ready to use patches for in-distro kernel maintainers

● Integrate generation of own config files with distribution’s tools



21

BINARY BLOBS
Bleh

How to help:

● Take care of license (there has to be right for re-distribution)

● Send blobs to linux-firmware repository (all distributions package it)

● Suggest opening blobs source code and tools to build it



THANK YOU

plus.google.com/+MarcinJuszkiewicz facebook.com/marcin.juszkiewicz

linkedin.com/in/marcinjuszkiewicz


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22

